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Abstract

The Atomic Force Microscope (AFM) is a mechanical microscope capable of pro-

ducing three-dimensional images of a wide variety of sample surfaces with nanometer

precision in air, vacuum, or liquid environments. Tapping mode Atomic Force Mi-

croscopy has become a popular mode of operation due to the reduced lateral forces

between the probe and sample compared to other modes of AFM operation.

The reliance on feedback control and the complex dynamics associated with this

device have made it an interesting topic of research for control systems engineers over

the past two and a half decades. Despite the amount of research which has been

undertaken to improve the operation of this instrument there is still more room for

improvement. The ideas presented in this work provide solutions to several problems

associated with imaging in tapping mode with the AFM. These new tools, combined

with those of other researchers, are providing scientists with an instrument which can

image faster with improved image quality than its predecessors.

When operating an AFM in tapping mode the quality (Q) factor of the cantilever

probe places a limitation on scan speed and image quality/resolution. A low Q factor

cantilever is required for high scan speeds, whereas a high Q factor cantilever is

required for high resolution and to minimize image distortion when scanning soft

samples.

One other limitation to scan speed is the ability of the cantilever to track the

sample after a large steep downward step in sample topography is encountered. As the
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scan speed is increased the likelihood of artifacts appearing in the image is increased

due to the probe tip losing contact with the sample.

This work introduces new methods of controlling the Q factor of an AFM micro-

cantilever to improve the scan speed and image quality of the AFM operating in

tapping mode.

Active Q control, which is based on velocity feedback, is commonly used to mod-

ify the effective Q factor of the AFM micro-cantilever to achieve optimal scan speed

and image resolution for the imaging environment and sample type. Time delay of

the cantilever displacement signal is the most common method of cantilever velocity

estimation. Spill-over effects from unmodeled cantilever dynamics may degrade the

closed-loop system performance, possibly resulting in system instability, when time

delay velocity estimation is used. A resonant controller is proposed in this work as an

alternate method of velocity estimation. This new controller has guaranteed closed-

loop stability, is easy to tune and may be fitted into existing commercial AFMs with

minimal modification. Significant improvements in AFM image quality are demon-

strated using this control method.

The feedback signal in the active Q control feedback loop comes from an optical

sensor which produces a significant amount of measurement noise. Piezoelectric shunt

control is introduced as a new method of controlling the Q factor of a piezoelectric

self actuating AFM micro-cantilever. The use of this control technique removes the

noisy optical sensor from the Q control feedback loop. The mechanical damping of

the micro-cantilever is controlled by placing an electrical impedance in series with

the tip oscillation circuit. Like the resonant controller the closed-loop stability of

this controller, in the presence of unmodeled cantilever dynamics, is guaranteed. A

passive impedance is used to reduce the cantilever Q factor to improve the scan

speed when imaging hard sample surfaces in air. An active impedance is used to

increase the cantilever Q factor for improved image quality when imaging soft samples,

samples with fine features or samples immersed in a fluid. A synthetic impedance
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was designed to allow easy modification of the control parameters, which may vary

with environmental conditions, and to implement the active impedance necessary for

cantilever Q factor enhancement.

The switched gain resonant controller is presented as a new method of improving

the ability of the cantilever to track the sample when imaging at high speed. The

switched gain resonant controller is implemented to switch the cantilever Q factor

according to the sample profile during the scan. If the controller detects that the

probe tip has lost contact with the sample the cantilever Q factor is increased leading

to a faster response of the feedback controller, expediting the resumption of contact.

A significant reduction in image artifacts due to probe loss is observed when this

control technique is employed at high scan speeds.
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